Abstract

Controlling spin-spin interactions in multispin molecular assemblies is important for developing new approaches to quantum information processing. In this work, a covalent electron donor-acceptor-radical triad is used to probe spin-selective reduction of the stable radical to its diamagnetic anion. The molecule consists of a perylene electron donor chromophore (D) bound to a pyromellitimide acceptor (A), which is, in turn, linked to a stable α,γ-bisdiphenylene-β-phenylallyl radical (R•) to produce D-A-R•. Selective photoexcitation of D within D-A-R• results in ultrafast electron transfer to form the D+•-A-•-R• triradical, where D+•-A-• is a singlet spin-correlated radical pair (SCRP), in which both SCRP spins are uncorrelated relative to the R• spin. Subsequent ultrafast electron transfer within the triradical forms D+•-A-R-, but its yield is controlled by spin statistics of the uncorrelated A-•-R• radical pair, where the initial charge separation yields a 3:1 statistical mixture of D+•-3(A-•-R•) and D+•-1(A-•-R•), and subsequent reduction of R• only occurs in D+•-1(A-•-R•). These findings inform the design of multispin systems to transfer spin coherence between molecules targeting quantum information processing using the agency of SCRPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call