Abstract
All higher-spin (s≥1/2) Ising spin glasses are studied by renormalization-group theory in spatial dimension d=3, exactly on a d=3 hierarchical model and, simultaneously, by the Migdal-Kadanoff approximation on the cubic lattice. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and the spin-glass runaway exponent are calculated. It is found that, in d=3, a finite-temperature spin-glass phase occurs for all spin values, including the continuum limit of s→∞. The phase diagrams, with increasing spin s, saturate to a limit value. The spin-glass phase, for all s, exhibits chaotic behavior under rescalings, with the calculated Lyapunov exponent of λ=1.93 and runaway exponent of y_{R}=0.24, showing simultaneous strong-chaos and strong-coupling behavior. The ferromagnetic-spin-glass and spin-glass-antiferromagnetic phase transitions occurring, along their whole length, respectively at p_{t}=0.37 and 0.63 are unaffected by s, confirming the percolative nature of this phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.