Abstract
The classical laws of physics are usually invariant under time reversal. Here, we reveal a novel class of magnetomechanical effects rigorously breaking time-reversal symmetry. These effects are based on the mechanical rotation of a hard magnet around its magnetization axis in the presence of friction and an external magnetic field, which we call spin revolution. The spin revolution leads to a variety of symmetry breaking phenomena including upward propulsion on vertical surfaces defying gravity as well as magnetic gyroscopic motion that is perpendicular to the applied force. The angular momentum of spin revolution differs from those of the magnetic field, the magnetic torque, the rolling axis, and the net torque about the rolling axis. The spin revolution emerges spontaneously, without external rotations, and offers various applications in areas such as magnetism, robotics and energy harvesting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.