Abstract

When Landau levels (LLs) become degenerate near the Fermi energy in the quantum Hall regime, interaction effects can drastically modify the electronic ground state. We study the quantum Hall ferromagnet formed in a two-dimensional hole gas around the LL filling factor ν=1 in the vicinity of a LL crossing in the heave-hole valence band. Cavity spectroscopy in the strong-coupling regime allows us to optically extract the spin polarization of the two-dimensional hole gas. By analyzing this polarization as a function of hole density and magnetic field, we observe a spin flip of the ferromagnet. Furthermore, the depolarization away from ν=1 accelerates close to the LL crossing. This is indicative of an increase in the size of skyrmion excitations as the effective Zeeman energy vanishes at the LL crossing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.