Abstract

The effects of the perpendicular magnetic field on the multi-barriers system of 5-barriers to 100-barriers are studied. Considering the low-energy Hamiltonian of the system with spin-orbit coupling we modulate the external magnetic field as the Zeeman energy on the orbital magnetic moment. The transport of an incident electron passing through the superlattice created by the top-gated monolayer MoS2 based on the transfer matrix method is investigated and the spin-up and the spin-down transmissions and the spin-polarization for 5-barriers to 100-barriers are obtained. Comparing the results show that in the case of 30-barriers, we have both reliable transmissions for the system and a 100% spin-polarization so that the spin-flip can occur and gives us a desired spintronic device. We also sketched the variations of the transmissions and spin-polarization versus the relative barrier-widths over the well-widths, (D/W), which show the optimum value is 1 by 2, respectively. Finally, we calculate the spin-up and spin-down conductance and total conductivity of the system which shows the so-called resonant tunneling peaks and amplifying the internal spin-orbit coupling with the external magnetic field as the Zeeman energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.