Abstract

Unraveling the magnetic order in iron chalcogenides and pnictides at atomic scale is pivotal for understanding their unconventional superconducting pairing mechanism, but is experimentally challenging. Here, by utilizing spin-polarized scanning tunneling microscopy, real-space spin contrasts are successfully resolved to exhibit atomically unidirectional stripes in Fe4 Se5 ultrathin films, the plausible closely related compound of bulk FeSe with ordered Fe-vacancies, which are grown by molecular beam epitaxy. As is substantiated by the first-principles electronic structure calculations, the spin contrast originates from a pair-checkerboard antiferromagnetic ground state with in-plane magnetization, which is modulated by a spin-lattice coupling. These measurements further identify three types of nanoscale antiferromagnetic domains with distinguishable spin contrasts, which are subject to thermal fluctuations into short-ranged patches at elevated temperatures. This work provides promising opportunities in understanding the emergent magnetic order and the electronic phase diagram for FeSe-derived superconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call