Abstract
MOLLYNX is a new crystallographic tool developed to access a more precise description of the spin-dependent electron density of magnetic crystals, taking advantage of the richness of experimental information from high-resolution X-ray diffraction (XRD), unpolarized neutron (UND) and polarized neutron diffraction (PND). This new program is based either on the well known Hansen–Coppens multipolar model (MOLLYNX-mult) or on a new expansion over a set of atomic orbitals (MOLLYNX-orb). The main difference between the two models is the basis of the expansion: in MOLLYNX-mult the expansion is over atom centered real spherical harmonics, in MOLLYNX-orb the expansion is over a set of atomic orbitals with which mono and bicentric contributions are calculated. This new approach of MOLLYNX-orb can also be applied to nonmagnetic crystals. This paper summarizes the theoretical ground of two models and describes the first applications to organic, organometallic and inorganic magnetic materials
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.