Abstract

ABSTRACTThe bulk magnetic properties of (ErxY1-x)2Fe14B and (ErxPr1-x)2Fe14B systems were studied over the temperature range 4.2-1100 K. Lattice parameters, saturation magnetizations, Curie temperatures and spin reorientation temperatures were determined. Theoretical description of the detailed magnetic behavior is presented, based on a crystal field model. The (ErxY1-x)2Fe14B compounds were all found to exhibit plane-to-axis spin reorientations similar to that observed for Er2Fe14B, with the transition temperature decreasing with increasing Y content. In contrast, the spin reorientations in the (ErxPr1-x)2Fe14B systems appear to be of the cone-to-axis type. Since higher order crystal field terms appear to be significant only in the cases of Nd3+ and Ho3+, the results are discussed in terms of a crystal field Hamiltonian involving only 2nd order terms. Using known values of the exchange field, Fe anisotropy and the ratios of the crystal field coefficients, the multi-ion cr 6.tal field problem was formulated in terms of a single adjustable parameter (B02(f). It is shown that 2nd order crystal field terms are capable, not only of explaining the conical anisotropy of the (ErxPr1-x)2Fe14B systems, but also the decrease in the Er moment upon passing through the spin reorientation (as has been observed for Er2Fe14B). The magnetic structure of Er1.5Pr0.5Fe14B is also predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.