Abstract

In recent years, static and dynamic properties of non-180^{∘} domain walls in magnetic materials have attracted a great deal of interest. In this paper, spin-reorientation critical dynamics in the two-dimensional XY model is investigated with Monte Carlo simulations and theoretical analyses based on the Langevin equation. At the Kosterlitz-Thouless phase transition, the dynamic scaling behaviors of the magnetization and the two-time correlation function are carefully analyzed, and critical exponents are accurately determined. When the initial value of the angle between adjacent domains is slightly lower than π, a critical exponent is introduced to characterize the abnormal power-law increase of the magnetization in the horizontal direction inside the domain interface, which is measured to be ψ=0.0568(8). In addition, the relation ψ=η/2z is analytically deduced from the Langevin dynamics in the long-wavelength approximation, well consistent with numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.