Abstract
The theory of spin relaxation of conduction electrons is developed for zinc-blende-type quantum wells grown on (110)-oriented substrate. It is shown that, in asymmetric structures, the relaxation of electron spin initially oriented along the growth direction is characterized by two different lifetimes and leads to the appearance of an in-plane spin component. The magnitude and sign of the in-plane component are determined by the structure inversion asymmetry of the quantum well and can be tuned by the gate voltage. In an external magnetic field, the interplay of cyclotron motion of carriers and the Larmor precession of electron spin can result in a nonmonotonic dependence of the spin density on the magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.