Abstract
We investigate the spin relaxation limited by the D’yakonov–Perel’ mechanism in n-type (111) GaAs quantum wells, by means of the kinetic spin Bloch equation approach. In (111) GaAs quantum wells, the in-plane effective magnetic field from the D’yakonov–Perel’ term can be suppressed to zero on a special momentum circle under the proper gate voltage, by the cancellation between the Dresselhaus and Rashba spin-orbit coupling terms. When the spin-polarized electrons mainly distribute around this special circle, the in-plane inhomogeneous broadening is small and the spin relaxation can be suppressed, especially for that along the growth direction of quantum well. This cancellation effect may cause a peak (the cancellation peak) in the density or temperature dependence of the spin relaxation time. In the density (temperature) dependence, the interplay between the cancellation peak and the ordinary density (Coulomb) peak leads to rich features of the density (temperature) dependence of the spin relaxation time. The effect of impurities, with its different weights on the cancellation peak and the Coulomb peak in the temperature dependence of the spin relaxation, is revealed. We also show the anisotropy of the spin relaxation with respect to the spin-polarization direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.