Abstract

We perform an investigation on the spin relaxation for n-type ZnO (0001) quantum wells by numerically solving the kinetic spin Bloch equations with all the relevant scattering explicitly included. We show the temperature and electron density dependence of the spin relaxation time under various conditions such as impurity density, well width and external electric field. We find a peak in the temperature dependence of the spin relaxation time at low impurity density. This peak can survive even at 100 K, much higher than the prediction and measurement value in GaAs. There also exhibits a peak in the electron density dependence at low temperature. These two peaks originate from the nonmonotonic temperature and electron density dependence of the Coulomb scattering. The spin relaxation time can reach the order of nanosecond at low temperature and high impurity density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.