Abstract
AbstractThe spin state of the transition metal species (TMs) has been recognized as a critical descriptor in Fenton‐like catalysis. The raised spin state of dispersed TMs in carbon will enhance the redox processes with adsorbed peroxides and improve the oxidation performance. Nevertheless, establishing the spin‐activity correlations for the encapsulated TM nanoparticles remains challenging because of the difficulties in fine‐tuning the spin state of TM species and the insufficient understanding of orbital hybridization states upon interaction with peroxides. Here, the advantage of the fast‐temperature heating/quenching of microwave thermal shock is taken to engineer the structure and spin state of encapsulated TMs within the N‐doped graphitic carbons. The reduced TMs particle size and enhanced TMs‐carbon coupling increase surface entropy and regulate eg electron filling of the high‐spin TM‐N coordination, endowing electrons with high mobility and facilitating peroxymonosulfate (PMS) adsorption. The strong interactions further uplift the PMS O 2p band position toward the Fermi level and thus elevate the oxidation potential of surface‐activated PMS (PMS*) as the dominant nonradical species for pollutant degradation. The deciphered orbital hybridizations of engineered high‐spin TM and PMS enlighten the smart design of spin‐regulated nanocomposites for advanced water purification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.