Abstract

We investigate the edge states of quantum spin-Hall phase Bi(111) bilayer nano-ribbons (BNRs) and their spin-rectifying effect using first-principles calculations and a non-equilibrium transport method. As low-dimensional materials, BNRs have tunable electronic properties, which are not only dependent on the edge shape, chemical passivation, or external electric fields but also governed by geometrical deformation. Depending on the passivation types, the interaction of the helical edge states in BNRs exhibits various patterns, enabling the valley engineering of the Dirac cones. In addition, the spin texture of the Dirac state is significantly tuned by edge passivation, external electric fields and geometric deformations. We demonstrate that curved BNRs can be used as the spin valves to rectify the electric currents via the edge states. Our results provide a practical way of utilizing two-dimensional topological insulator Bi bilayers for spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.