Abstract

Recently, antiferromagnets have received revived interest due to their significant potential for developing next-generation ultrafast magnetic storage. Here, we report dc spin pumping by the acoustic resonant mode in a canted easy-plane antiferromagnet α-Fe_{2}O_{3} enabled by the Dzyaloshinskii-Moriya interaction. Systematic angle and frequency-dependent measurements demonstrate that the observed spin-pumping signals arise from resonance-induced spin injection and inverse spin Hall effect in α-Fe_{2}O_{3}-metal heterostructures, mimicking the behavior of spin pumping in conventional ferromagnet-nonmagnet systems. The pure spin current nature is further corroborated by reversal of the polarity of spin-pumping signals when the spin detector is switched from platinum to tungsten which has an opposite sign of the spin Hall angle. Our results reveal the intriguing physics underlying the low-frequency spin dynamics and transport in canted easy-plane antiferromagnet-based heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call