Abstract

The ac spin pumping of noncollinear antiferromagnets is theoretically investigated. Starting from an effective action description of the spin system, we derive the Onsager coefficients connecting the spin pumping and spin-transfer torque associated with the dynamics of the SO(3)-valued antiferromagnetic order parameter. Our theory is applied to a kagome antiferromagnet resonantly driven by a uniform external magnetic field. We demonstrate that the reactive (dissipative) spin-transfer torque parameter can be extracted from the pumped ac spin current in-phase (in quadrature) with the driving field. Furthermore, we find that the three spin-wave bands of the kagome AF generate spin currents with mutually orthogonal polarization directions. This offers a unique way of controlling the spin orientation of the pumped spin current by exciting different spin-wave modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.