Abstract

The spin pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered Co2FeAl (CFA) /Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data has been analyzed using spin pumping theory in terms of spin current pumped through the ferromagnet /nonmagnetic metal interface to deduce the effective spin mixing conductance and the spin-diffusion length, which are estimated to be 1.16(0.19)x10^19 m^-2 and 3.50(0.35)nm, respectively. The damping constant is found to be 8.4(0.3)x10^-3 in the Mo(3.5nm) capped CFA(8nm) sample corresponding to a ~42% enhancement of the original Gilbert damping (6.0(0.3)x10^-3) in the uncapped CFA layer. This is further confirmed by inserting a Cu dusting layer which reduces the spin transport across the CFA /Mo interface. The Mo layer thickness dependent net spin current density is found to lie in the range of 1-3 MAm^-2, which also provides additional quantitative evidence of spin pumping in this bilayer thin film system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call