Abstract
We study the spin-dependent transport properties of graphene nanoribbons with Rashba spin-orbit interaction (SOI). It is found that highly spin polarized electrical currents can be produced in asymmetrically-notched graphene nanoribbons, and the polarization components are found to be along the x, y and z directions. The spin polarization is largely enhanced by breaking the spatial symmetries of ideal graphene nanoribbons with Rashba SOI, and the spin polarized electrical currents with higher flexibility in the orientation of the polarization can be generated. This offers new possibilities for the generation of high spin polarization in graphene nanoribbons without external magnetic fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.