Abstract

The relation between energy and density (known as the nuclear equation of state) plays a major role in a variety of nuclear and astrophysical systems. Spin and isospin asymmetries can have a dramatic impact on the equation of state and possibly alter its stability conditions. An example is the possible manifestation of ferromagnetic instabilities, which would indicate the existence, at a certain density, of a spin-polarized state with lower energy than the unpolarized one. This issue is being discussed extensively in the literature and the conclusions are presently very model dependent. We will report and discuss our recent progress in the study of spin-polarized neutron matter. The approach we take is microscopic and relativistic. The calculated neutron matter properties are derived from realistic nucleon-nucleon interactions. This makes it possible to understand the properties of the equation of state in terms of specific features of the nuclear force model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.