Abstract

Recent progress concerning spin-polarized magnetic tunnelling effects for (i) trilayer standard ferromagnet (F)/insulator (I)/ferromagnet (F) junctions, (ii) spin-valve-type junctions, (iii) trilayer or multilayer ferromagnet/granular/ferromagnet junctions and (iv) F/I/F junction with a `wedge-geometry' insulator is reviewed. Special emphasis is placed on the dependence of the tunnel magnetoresistance ratio on temperature and also the intensity of the applied voltage. It was found that the resistance for the saturation magnetization state, , and the tunnelling magnetoresistance ratio, TMR, of an junction decreased rapidly with increasing temperature, whereas those of a junction were insensitive to temperature. Concerning the bias voltage dependence of and TMR, the same tendency with temperature was observed for and junctions. Spin-valve-type junction exchange biased by a FeMn layer exhibits a relatively large TMR ratio up to about 400 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.