Abstract

Low-density neutron matter is relevant to the study of neutron-rich nuclei and neutron star crusts. Unpolarized neutron matter has been studied extensively over a number of decades, while experimental guidance has recently started to emerge from the field of ultracold atomic gases. In this work, we study population-imbalanced neutron matter (possibly relevant to magnetars and to density functionals of nuclei) applying a Quantum Monte Carlo method that has proven successful in the field of cold atoms. We report on the first ab initio simulations of superfluid low-density polarized neutron matter. For systems with small imbalances, we find a linear dependence of the energy on the polarization, the proportionality coefficient being dependent on the density. We also present results for the momentum and pair distributions of the two fermionic components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.