Abstract
AbstractRecent results from spin polarized electron spectroscopie studies of surfaces and ultrathin films are presented. The Magnetic coupling of 3d transition Metals (Cr,Mn) to the Fe (100) surface is studied by spin polarized electron energy loss spectroscopy. The first atomic layer of Cr and mn aligns antiparallel to the Fe. For larger thicknesses we find evidence for layer-by-layer antiferromagnetic order. In the range of 1–6 atomic layers the behavior is more complex with the surface of the Cr films showing preferential ferromagnetic alignment while the mn surface aligns antiparallel to the Fe substrate.Secondary electrons from Gd (0001) surfaces are shown to be highly spin polarized. However, no enhancement mechanism at low kinetic energy as in the 3d transition metals is observed indicating the absence of strongly spin dependent inelastic scattering in Gd. Temperature dependent spin polarized 4f photoemis-sion results show almost complete polarization demonstrating ferromagnetic surface coupling. However, a perpendicular surface magnetization component is found indicating surface spin canting. A large enhancement of the surface Curie temperature is also present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.