Abstract

A current scientific challenge with many ramifications for magnetic technology is to image magnetic microstructure with the highest possible spatial resolution in order to observe magnetic domains or even spin configurations within a domain wall. Ultimately one can envision imaging the magnetic moment of individual atoms which would also make possible the observation of antiferromagnetic structures. The measurement of the spin polarization of secondary electrons generated by a finely focussed (unpolarized) scanning electron microscope (SEM) beam to obtain high-resolution magnetization images is presented. An alternative measurement, using a spin-polarized incident beam in an SEM, has many difficulties which are discussed. To measure spin configurations with higher spatial resolution, the possibility of introducing electron spin polarization in scanning field-emission and tunneling microscopy is considered. The measurement of the spin polarization of secondary electrons generated by a specially prepared single-atom scanning field-emission tip looks promising. High-resolution imaging of spin configurations in scanning tunneling microscopy appears possible if the tip itself is a source of spin-polarized electrons. The potential advantages and unsolved problems involved in using a ferromagnetic tip or an optically pumped semiconductor tip are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.