Abstract

The present work delves into the spin-polarized transport property of organic radicals sandwiched between two zigzag-graphene nanoribbon (ZGNR) electrodes by employing density functional theory and nonequilibrium Green's function technique. We demonstrated that the magnetic center(s) of the radical can manipulate the localized edge states of the ZGNR in the scattering region, causing ferromagnetic coupling. Such manipulation of the magnetic edges results in a high spin-filter effect in molecular junctions, and even the antiferromagnetic diradicals serve as nearly perfect spin filters. We have confirmed that this is a general phenomenon of ZGNR by analyzing two antiferromagnetic diradicals and a doublet. The spin-polarized density of states, transmission spectra, and current vs voltage curves of the systems provide strong evidence for our findings. This research strongly suggests that ZGNRs attached with organic radicals could be the perfect building blocks for spintronic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call