Abstract

The atomic and electronic structures at the apex of W tips were studied by means of field ion microscopy and field emission microscopy, before and after the thermal deposition of a 5 nm Fe film. Two geometries of W tip, a conventional hemi-spherical type and a chisel (flat needle) type, were prepared. The hemispherical and the chisel W tips had a ⟨110⟩ direction parallel and perpendicular to the tip axis, respectively. The coated Fe films were found to be most likely in a non-crystalline phase, and to have a lower work function leading to a drastic change in electron emission from the apexes. The spin-polarization vectors of field-emitted electrons from these Fe/W tips were investigated with a Mott detector with a rotatable mechanism of tips. A similar absolute value of the spin-polarization vector was obtained for each Fe/W, while the direction of the spin-polarization vector was dependent on the shape of the apex. The angle from the tip axis was θ=45° for the hemispherical apex and θ=66° for the chisel apex. A spin-polarized scanning tunneling microscopy setup with a rotation mechanism of such Fe/W tips made it possible to detect both the in-plane and the out-of-plane spin component of a sample magnetization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call