Abstract

Based on density functional theory (DFT), the spin polarization properties of a thiophene molecule which is adsorbed at Fe (100) surface are discussed. A variety of horizontal and vertical adsorption configurations as well as their influences on the spin density distributions are studied in detail. The spin polarization comes from the [Formula: see text]-[Formula: see text] orbital coupling between the thiophene molecule and the electrode, which leads to the molecules’ energy level shifting and the density of states (DOS) broadening, so the two spin states near the Fermi level are exchange split. It is also found that the interfacial spin polarization is different under different contact configurations, and the biggest one will be obtained when the S atom is directly placed above the Fe atom at the horizontal direction. On the other hand, interface spin inversion can be obtained by adjusting the adsorption position, which will be helpful to build spin sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call