Abstract

The key factors in achieving high energy efficiency for proton exchange membrane fuel cells are reducing overpotential and increasing the oxygen reduction rate. Based on first-principles calculations, we induce H atom adsorption on 4 × 4 × 1 monolayer MoSe2 to induce spin polarization, thereby improving the catalytic performance. In the calculation of supercells, the band unfolding method is used to address the band folding effect in doped systems. Furthermore, it is evident from analyzing the unique energy band configuration of MoSe2 that a higher valley splitting value has better catalytic effects on the oxygen reduction reaction. We believe that the symmetries of the distinct adsorption site result in different overpotentials. In addition, when an even number of hydrogen atoms is adsorbed, the monolayer MoSe2 has no spin polarization. The spin can affect the electron transfer process and alter the hybrid energy with the reaction products, thereby regulating its catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.