Abstract

Introducing magnetism in two-dimensional materials is of particular importance for both fundamental research and practical applications in nanoscale spintronics. Herein, we report the lifting of valley degeneracy in a MoS2 monolayer via magnetic proximity coupling to an insulating antiferromagnetic Cr2O3 substrate and the gate-voltage tunability of the MoS2/Cr2O3 heterojunction on the basis of first-principles calculations. Our calculations suggest that there is a large Zeeman splitting of 23.4 meV in the MoS2 monolayer due to strong spin-orbit coupling, corresponding to a magnetic exchange field of 100 T. Both spin and valley indices flip when the magnetic ordering of Cr2O3 is reversed. More interestingly, the charge transfer, magnetic moment, band gap and Schottky barrier of the heterojunction can be tuned continually by applying an external out-of-plane gate voltage, resulting in variable valley Zeeman splitting ranging from 11.3 to 34.5 meV. These findings demonstrate great potential applications of the Cr2O3/MoS2 heterojunction in nanoscale spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call