Abstract

Spin-dependent transport of relativistic electrons through graphene based double barrier (well) structures with ferromagnetic electrodes have been theoretically investigated. Electron transmission with different spin states is strongly influenced by the incident wave vector, the height (depth) of the barrier and the separation between them. When the angle of the incident electrons is varied from zero to ±π/2, spin polarization varies from zero to 100% with characteristic oscillations that indicate spin anisotropy. Due to Klein tunnelling, spin-polarization is always zero for normal incident electrons; high spin-polarization only occurs at large incident angles. Because the resonance features in the spin-dependent transmission result from resonant electron states in wells or hole states in barriers, the conductance can reach e2/h in this resonant-tunnelling structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.