Abstract

Both the Jahn-Teller distortion of Cu$^{2+}$O$_6$ octahedra and magnetic ordering are absent in hexagonal Ba$_3$CuSb$_2$O$_9$ suggesting a Cu 3$d$ spin-orbital liquid state. Here, by means of resonant x-ray scattering and absorption experiment, we show that oxygen 2$p$ holes play crucial role in stabilizing this spin-orbital liquid state. These oxygen holes appear due to the "reaction" Sb$^{5+}$$\rightarrow$Sb$^{3+}$ $+$ two oxygen holes, with these holes being able to attach to Cu ions. The hexagonal phase with oxygen 2$p$ holes exhibits also a novel charge-orbital dynamics which is absent in the orthorhombic phase of Ba$_3$CuSb$_2$O$_9$ with Jahn-Teller distortion and Cu 3$d$ orbital order. The present work opens up a new avenue towards spin-charge-orbital entangled liquid state in transition-metal oxides with small or negative charge transfer energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.