Abstract

Magnetization switching by current induced spin–orbit torques (SOTs) in heavy metal/ferromagnetic metal/oxide structures is of great research interest due to its potential applications in the field of low power consumption spintronic devices. Here, we study the Slonczewski-like and the field-like SOT effective fields in β-W/Co2FeAl/MgO structures showing perpendicular magnetic anisotropy (PMA). We characterize the SOT effective fields using harmonic Hall voltage measurements and we point out the essential role of the planar Hall effect corrections. We estimate that for bulk β-W an effective spin Hall angle as large as 0.3 ± 0.03 and a spin diffusion length of 2.2 ± 0.3 nm. Moreover, we demonstrate SOT-induced magnetization switching for charge current densities of the order of 106 A cm−2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.