Abstract

Spin–orbit photonic devices usually rely on 2D (transverse) material structuring and are designed for optimal coupling between the polarization state and the spatial degrees of freedom at a given wavelength. Exploiting the third dimension (longitudinal) provides ways to bypass monochromatic limitations. Within a singular optics framework, here we show that chiral liquid crystals endowed with non-singular 3D helix axis orientational distribution exhibit transmissive broadband spin–orbit optical vortex generation as well as an optical diode effect. These results are in stark contrast to the properties of spin–orbit optical elements fabricated from chiral liquid crystals with a uniform orientation of the helix axis, which are reflective devices that process forward and backward propagating waves equally. Moreover, the similarities between the proposed 3D chiral structure and that of the cuticle of some insects invites considering spin–orbit photonics from a biological perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.