Abstract
Spin-orbit interactions (SOI), describing the transfer of a spin degree of freedom to an orbital angular momentum (OAM), have been widely explored in recent opto-acoustic studies for applications mainly in spintronics and for topological insulators [1]. We report the observation of SOI by Brillouin scattering in an optical nanofiber. Specifically, we describe the transfer of a spin degree of freedom from light incident to the nanofiber to an acoustic vortex with a topological charge of order 2 in the form of OAM. Coupled with the phase matching condition for the energy conservation during Brillouin scattering, it results in a backscattered wave with a spin opposite to the incident wave. This observation allows considering applications of opto-acoustic Brillouin memory based on polarization conversion through a SOI [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.