Abstract
First-principles electronic structure studies based on local spin density functional theory and performed on extremely complex simulations of ever increasingly realistic systems, play a very important role in explaining and predicting surface and interface magnetism. This review deals with what is a major issue for first-principles theory, namely the theoretical/computational treatment of the weak spin–orbit coupling in magnetic transition metals and their alloys and its important physical consequences: magneto-crystalline anisotropy, magnetostriction, magneto-optical Kerr effects and X-ray magnetic circular dichroism. As is demonstrated, extensive first-principles calculations and model analyses now provide simple physical insights and guidelines to search for new magnetic recording and sensor materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.