Abstract

We have studied the relevance of spin-orbit coupling to the dispersion 00009 relation of the Larmor resonance observed in inelastic light scattering and electron-spin resonance experiments on GaAs quantum wells. We show that the spin-orbit interaction, here described by a sum of Dresselhaus and Bychkov-Rashba terms, couples Zeeman and spin-density excitations. We have evaluated its contribution to the spin splitting as a function of the magnetic field $B$, and have found that in the small $B$ limit, the spin-orbit interaction does not contribute to the spin splitting, whereas at high magnetic fields it yields a $B$ independent contribution to the spin splitting given by $2(\lambda_R^2-\lambda_D^2)$, with $\lambda_{R,D}$ being the intensity of the Bychkov-Rashba and Dresselhaus spin-orbit terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.