Abstract

Quantum droplets have intrigued much attention recently in view of their successful observations in the ultracold homonuclear atoms. In this work, we demonstrate a new mechanism for the formation of quantum droplet in heteronuclear atomic systems, i.e., by applying the synthetic spin-orbit coupling(SOC). Take the Bose-Fermi mixture for example, we show that by imposing a Rashba SOC between the spin states of fermions, the greatly suppressed Fermi pressure can enable the formation of Bose-Fermi droplets even for very weak boson-fermion attractions, which are insufficient to bound a droplet if without SOC. In such SOC-induced quantum droplets, the boson/fermion density ratio universally depends on the SOC strength, and they occur in the mean-field collapsing regime but with a negative fluctuation energy, distinct from the interaction-induced droplets found in literature. The accessibility of these Bose-Fermi droplets in ultracold Cs-Li and Rb-K mixtures is also discussed. Our results shed light on the droplet formation in a vast class of heteronuclear atomic systems through the manipulation of single-particle physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.