Abstract

We study the ensemble of pseudo-spin 1/2 ultracold bosons, performing Lévy flights, confined in a parabolic potential. The (pseudo-) spin-orbit coupling (SOC) is additionally imposed on these particles. We consider the structure and dynamics of macroscopic pseudospin qubits based on Bose-Einstein condensates, obtained from the above "fractional" bosons. Under "fractional" we understand the substitution of the ordinary second derivative (kinetic energy term) in the Gross-Pitaevskii equationby a so-called fractional Laplacian, characterized by the Lévy index μ. We show that the joint action of interparticle interaction, SOC, and Zeeman splitting in a synthetic magnetic field makes the dynamics of corresponding qubit highly nontrivial with evident chaotic features at both strong interactions and Lévy indices μ→1 when the Lévy trajectories of bosons with long jumps dominated over those derived from ordinary Gaussian distribution, corresponding to μ=2. Using analytical and numerical arguments, we discuss the possibilities to control the above qubit using the synergy of SOC, interaction strength, and "fractionality," characterized by the Lévy index μ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call