Abstract

Motivated by recent studies on ferroelectric-like order coexisting with metallicity, we investigate ferroelectric (FE) superconductivity in which a FE-like structural phase transition occurs in the superconducting state. We consider a two-dimensional s-wave superconductor with Rashba-type antisymmetric spin-orbit coupling (ASOC). Assuming linear relationship between polar lattice displacement and strength of the ASOC, we treat the Rashba-type ASOC as a molecular field of FE-like order. It is shown that the FE-like order is induced by the magnetic field when the system is superconducting. Furthermore, we clarify the FE superconductivity in a low carrier density regime, which was recently discovered in doped SrTiO$_3$. It is demonstrated that the FE superconducting state can be stable in this regime in the absence of the magnetic field. Our results open a way to control the electric polarization by superconductivity, that is, superconducting multiferroics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call