Abstract

It follows from work of S. Mochizuki, F. Liu, and B. Osserman that there is a relationship between Ehrhart’s theory concerning rational polytopes and the geometry of the moduli stack classifying dormant indigenous bundles on a proper hyperbolic curve in positive characteristic. This relationship was established by considering the (finite) cardinality of the set consisting of certain colorings on a 3-regular graph called spin networks. In the present article, we recall the correspondences between spin networks, lattice points of rational polytopes, and dormant indigenous bundles and present some identities and explicit computations of invariants associated with the objects involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.