Abstract
We study an interacting electronic system exhibiting a spin nematic instability. Using a phenomenological form for the spin fluctuation spectrum near the spin-density-wave (SDW) phase, we compute the spin nematic susceptibility in energy and momentum space as a function of temperature and the magnetic correlation length ξ. The spin nematic instability occurs when ξ reaches a critical value , i.e., its transition temperature is always higher than the SDW critical temperature . In particular, decreases monotonically with increasing . Concomitantly, low-energy nematic fluctuations are present in a wider temperature region as becomes higher. Approaching the spin nematic instability, the nematic spectral function at zero momentum exhibits a central peak as a function of energy for a finite temperature and a soft mode at zero temperature. These properties originate from the general feature that the imaginary part of the spin-fluctuation bubble has a term linear in energy and its coefficient is proportional to the square of temperature. Furthermore we find that the nematic spectral function exhibits a diffusive peak around zero momentum and zero energy without clear dispersive features. A possible phase diagram for the spin nematic and SDW transitions is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.