Abstract

Spin angular momentum, an elementary dynamical property of classical electromagnetic fields, plays an important role in spin-orbit and light-matter interactions, especially in near-field optics. The research on optical spins has led to the discovery of phenomena such as optical spin-momentum locking and photonic topological quasiparticles, as well as applications in high-precision detection and nanometrology. Here, we investigate spin-momentum relations in paraxial optical systems and show that the optical spin angular momentum contains transverse and longitudinal spin components simultaneously. The transverse spin originates from inhomogeneities of field and governed by the vorticity of the kinetic momentum density, whereas the longitudinal spin parallel to the local canonical momentum is proportional to the polarization ellipticity of light. Moreover, the skyrmionlike spin textures arise from the optical transverse spin can be observed in paraxial beams, and their topologies are maintained free from the influence of the Gouy phase during propagation. Interestingly, the optical singularities, including both phase and polarization singularities, can also affect the spin-momentum properties significantly. Our findings describe the intrinsic spin-momentum properties in paraxial optical systems and apply in the analysis of the properties of spin-momentum in optical focusing, imaging, and scattering systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.