Abstract

We show that atoms in tilted optical superlattices provide a platform for exploring coupled spin chains of forms that are not present in other systems. In particular, using a period-2 superlattice in one dimension, we show that coupled Ising spin chains with XZ and ZZ spin coupling terms can be engineered. We use optimized tensor network techniques to explore the criticality and nonequilibrium dynamics in these models, finding a tricritical Ising point in regimes that are accessible in current experiments. These setups are ideal for studying low-entropy physics, as initial entropy is "frozen-out" in realizing the spin models, and provide an example of the complex critical behavior that can arise from interaction-projected models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call