Abstract
A sensitive and efficient imaging technique is required to assess the subtle abnormalities occurring in the normal-appearing white matter (NAWM) and normal-appearing grey matter (NAGM) in patients with relapsing–remitting multiple sclerosis (RRMS). In this study, a fast 3D macromolecular proton fraction (MPF) quantification based on spin-lock (fast MPF-SL) sequence was proposed for brain MPF mapping. Thirty-four participants, including 17 healthy controls and 17 RRMS patients were prospectively recruited. We conducted group comparison and correlation between conventional MPF-SL, fast MPF-SL, and DWI, and compared differences in quantified parameters within MS lesions and the regional NAWM, NAGM, and normal-appearing deep grey matter (NADGN). MPF of MS lesions was significantly reduced (7.17% ± 1.15%, P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P$$\\end{document} < 0.01) compared to all corresponding normal-appearing regions. MS patients also showed significantly reduced mean MPF values compared with controls in NAGM (4.87% ± 0.38% vs 5.21% ± 0.32%, P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P$$\\end{document} = 0.01), NAWM (9.49% ± 0.69% vs 10.32% ± 0.59%, P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P$$\\end{document} < 0.01) and NADGM (thalamus 5.59% ± 0.67% vs 6.00% ± 0.41%, P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P$$\\end{document} = 0.04; caudate 5.10% ± 0.55% vs 5.53% ± 0.58%, P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P$$\\end{document} = 0.03). MPF and ADC showed abnormalities in otherwise normal appearing close to lesion areas (P < 0.01). In conclusion, time-efficient MPF mapping of the whole brain can be acquired efficiently (< 3 min) using fast MPF-SL. It offers a promising alternative way to detect white matter abnormalities in MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.