Abstract

Mott insulating ultracold gases posses a unique whole-atom exchange interaction which enables large quantum fluctuations between the Zeeman sublevels of each atom. By strengthening this interaction---either through the use of large-spin atoms, or by tuning the particle-particle interactions via optical Feshbach resonance---one may enhance fluctuations and facilitate the appearance of the long sought-after quantum spin liquid phase---all in the highly tunable environment of cold atoms. To illustrate the relationship between the spin magnitude, interaction strength, and resulting magnetic phases, we present and solve a mean field theory for bosons optically confined to the one particle-per-site Mott state, using both analytic and numerical methods. We find on a square lattice with bosons of hyperfine spin $f>2$, that making the repulsive s-wave scattering length through the singlet channel small---relative to the higher-order scattering channels---accesses a short-range resonating valence bond (s-RVB) spin liquid phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call