Abstract
The interplay between geometric frustration (GF) and bond disorder is studied in the Ising kagome lattice within a cluster approach. The model considers antiferromagnetic short-range couplings and long-range intercluster disordered interactions. The replica formalism is used to obtain an effective single cluster model from where the thermodynamics is analyzed by exact diagonalization. We found that the presence of GF can introduce cluster freezing at very low levels of disorder. The system exhibits an entropy plateau followed by a large entropy drop close to the freezing temperature. In this scenario, a spin-liquid (SL) behavior prevents conventional long-range order, but an infinitesimal disorder picks out uncompensated cluster states from the multi-degenerate SL regime, potentializing the intercluster-disordered coupling and bringing the cluster spin-glass state. To summarize, our results suggest that the SL state combined with low levels of disorder can activate small clusters, providing hypersensitivity to the freezing process in geometrically frustrated materials and playing a key role in the glassy stabilization. We propose that this physical mechanism could be present in several geometrically frustrated materials. In particular, we discuss our results in connection with the recent experimental investigations of the Ising kagome compound Co3Mg(OH)6Cl2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.