Abstract

The phosphorescence of phenazine (PZ) and quinoxaline (QX) was investigated after pulsed laser excitation in the glass-transition range of several alkane solvents. Three relaxation processes of PZ and QX in the metastable triplet state, T1, were studied as a function of temperature: (1) the decay of the selective population of the strongly phosphorescent triplet substate T1x due to spin-lattice relaxation (SLR), (2) the time-dependent red shift of the phosphorescence spectrum due to the solvation of triplet-state molecules, and (3) the decay of the phosphorescence polarization due to orientational relaxation (OR). Various aspects and connections of the mechanisms governing the three relaxation phenomena are discussed. The relaxation dynamics were characterized at temperatures above the glass-transition temperature of the respective solvent, where the fundamental processes involved are strongly dependent upon the solvent viscosities. For the systems treated here, OR and solvation were satisfactorily described by a Vogel-Fulcher-Tammann temperature behavior. SLR also depends on properties of the alkane solvent above the glass transition. Upon cooling, SLR becomes independent of the specific solvent properties and is based on mechanisms that are typical for amorphous glasses or solids. (This particular aspect will be the subject of a subsequent publication, part 2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.