Abstract

Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) from the group of phenylacetic acid derivatives, which has analgesic, anti-inflammatory and antipyretic properties. The interaction of non-steroidal anti-inflammatory drugs with cell membranes can affect their physicochemical properties, which, in turn, can cause a number of side effects in the use of these drugs. Electron paramagnetic resonance (EPR) spectroscopy could be used to study the interaction of diclofenac with a membrane, if its spin-labeled analogs existed. This paper describes the synthesis of spin-labeled diclofenac (diclofenac-SL), which consists of a simple sequence of transformations such as iodination, esterification, Sonogashira cross-coupling, oxidation and saponification. EPR spectra showed that diclofenac-SL binds to a lipid membrane composed of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 2H electron spin echo spectroscopy (ESEEM) was used to determine the position of the diclofenac-SL relative to the membrane surface. It was established that its average depth of immersion corresponds to the 5th position of the carbon atom in the lipid chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.