Abstract

We investigate spin transport in a metal square ring with a strong Rashba spin orbit coupling (RSOC) effect, in the presence of a time-dependent magnetic field. We show that RSOC can be regarded as a spin-dependent gauge field which imparts a spin-dependent geometric phase (Aharonov-Casher phase) to conduction electrons in the ring. Combining the Aharonov-Bohm phase due to the time-dependent magnetic field with the able Aharonov-Casher phase due to RSOC, we are able to construct a spin interference condition, which modulates spin transport in the ring. The spin transport in the system is calculated via the tight-binding non-equilibrium Green's function formalism. Based on our transport calculations, we proposed a potential application of the Rashba square ring system as an alternating spin current generator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.