Abstract

We demonstrate spin injection into superconducting Nb by employing a spin absorption technique in lateral spin valve structures. Spin currents flowing in a nonmagnetic Cu channel are preferably absorbed into Nb due to its strong spin-orbit interaction, the amount of which dramatically changes below or above the superconducting critical temperature (TC). The charge imbalance effect observed in the Cu/Nb interface ensures that superconducting Nb absorbs pure spin currents even below TC. Our analyses based on the density of states calculated using the Usadel equation can well reproduce the experimental results, implying that the strong spin-orbit interaction of Nb is still effective for the spin absorption even below TC. Most importantly, our method allows us to determine the intrinsic spin relaxation time in the superconducting Nb, which reaches more than 4 times greater than that in the normal state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call