Abstract

Spin superfluidity, i.e., coherent spin transport mediated by topologically stable textures, is limited by parasitic anisotropies rooted in relativistic interactions and spatial inhomogeneities. Since structural disorder in amorphous magnets can average out the effect of these undesired couplings, we propose this class of materials as platforms for superfluid spin transport. We establish nonlinear equations describing the hydrodynamics of spin in insulating amorphous magnets, where the currents are defined in terms of coherent rotations of a noncollinear texture. Our theory includes dissipation and nonequilibrium torques at the interface with metallic reservoirs. This framework allows us to determine different regimes of coherent dynamics and their salient features in nonlocal magneto-transport measurements. Our work paves the way for future studies on macroscopic spin dynamics in materials with frustrated interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.